A linear algorithm for MLL proof net correctness and sequentialization

نویسنده

  • Stefano Guerrini
چکیده

The paper presents in full details the first linear algorithm given in the literature [6] implementing proof structure correctness for multiplicative linear logic without units. The algorithm is essentially a reformulation of the Danos contractibility criterion in terms of a sort of unification. As for term unification, a direct implementation of the unification criterion leads to a quasi-linear algorithm. Linearity is obtained after observing that the disjoint-set union-find at the core of the unification criterion is a special case of union-find with a real linear time solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Procedure for Automatic Proof Nets Construction

In this paper, we consider multiplicative linear logic (MLL) from an automated deduction point of view. Linear logic is more expressive than classical and intuitionistic logic and has an undirectional character due to the particular treatment of negation and the absence of structural rules. Considering this new logical framework to make logic programming or programming with proofs (extracting p...

متن کامل

Proof Nets with Explicit Negation for Multiplicative Linear Logic

Multiplicative linear logic (MLL) was introduced in Gi87] as a one-sided sequent calculus: linear negation is a notion that is deened, via De Morgan identities. One obtains proof nets for MLL by identifying derivations in the one-sided calculus that are equal up to a permutation of inference rules. In this paper we consider a similar quotient for the formulation of MLL as a two-sided sequent ca...

متن کامل

Proof Nets for Multiplicative Cyclic Linear Logic and Lambek Calculus

This paper presents a simple and intuitive syntax for proof nets of the multiplicative cyclic fragment (McyLL) of linear logic (LL). The proposed correctness criterion for McyLL proof nets can be considered as the non-commutative counterpart of the famous Danos contraction criterion for proof nets of the pure multiplicative fragment (MLL) of LL. Unlike the most part of current syntaxes for non-...

متن کامل

Cyclic Multiplicative-Additive Proof Nets of Linear Logic with an Application to Language Parsing

This paper concerns a logical approach to natural language parsing based on proof nets (PNs), i.e. de-sequentialized proofs, of linear logic (LL). It first provides a syntax for proof structures (PSs) of the cyclic multiplicative and additive fragment of linear logic (CyMALL). A PS is an oriented graph, weighted by boolean monomial weights, whose conclusions Γ are endowed with a cyclic order σ....

متن کامل

Correctness of Multiplicative (and Exponential) Proof Structures is NL -Complete

We provide a new correctness criterion for unit-free MLL proof structures and MELL proof structures with units. We prove that deciding the correctness of a MLL and of a MELL proof structure is NL-complete. We also prove that deciding the correctness of an intuitionistic multiplicative essential net is NL-complete.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 412  شماره 

صفحات  -

تاریخ انتشار 2011